Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D522-D528, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37956315

RESUMEN

The OpenProt proteogenomic resource (https://www.openprot.org/) provides users with a complete and freely accessible set of non-canonical or alternative open reading frames (AltORFs) within the transcriptome of various species, as well as functional annotations of the corresponding protein sequences not found in standard databases. Enhancements in this update are largely the result of user feedback and include the prediction of structure, subcellular localization, and intrinsic disorder, using cutting-edge algorithms based on machine learning techniques. The mass spectrometry pipeline now integrates a machine learning-based peptide rescoring method to improve peptide identification. We continue to help users explore this cryptic proteome by providing OpenCustomDB, a tool that enables users to build their own customized protein databases, and OpenVar, a genomic annotator including genetic variants within AltORFs and protein sequences. A new interface improves the visualization of all functional annotations, including a spectral viewer and the prediction of multicoding genes. All data on OpenProt are freely available and downloadable. Overall, OpenProt continues to establish itself as an important resource for the exploration and study of new proteins.


Asunto(s)
Bases de Datos de Proteínas , Péptidos , Proteómica , Secuencia de Aminoácidos , Genómica , Internet , Péptidos/genética , Proteoma/genética , Proteómica/métodos , Humanos
2.
Biol Open ; 12(9)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37670689

RESUMEN

Ubiquitination is a post-translational modification responsible for one of the most complex multilayered communication and regulation systems in the cell. Over the past decades, new ubiquitin variants and ubiquitin-like proteins arose to further enrich this mechanism. Recently discovered ubiquitin variant UbKEKS can specifically target several proteins and yet, functional consequences of this new modification remain unknown. Depletion of UbKEKS induces accumulation of lamin A in the nucleoli, highlighting the need for deeper investigations about protein composition and functions regulation of this highly dynamic and membrane-less compartment. Using data-independent acquisition mass spectrometry and microscopy, we show that despite not impacting protein stability, UbKEKS is required to maintain a normal nucleolar organization. The absence of UbKEKS increases nucleoli's size and accentuate their circularity while disrupting dense fibrillar component and fibrillar centre structures. Moreover, depletion of UbKEKS leads to distinct changes in nucleolar composition. Lack of UbKEKS favours nucleolar sequestration of known apoptotic regulators such as IFI16 or p14ARF, resulting in an increase of apoptosis observed by flow cytometry and real-time monitoring. Overall, these results identify the first cellular functions of the UbKEKS variant and lay the foundation stone to establish UbKEKS as a new universal layer of regulation in the ubiquitination system.


Asunto(s)
Sistemas CRISPR-Cas , Ubiquitina , Ubiquitina/genética , Ubiquitinas , Ubiquitinación , Apoptosis
3.
Molecules ; 28(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446867

RESUMEN

The blood-brain barrier (BBB) is a major obstacle to the development of effective therapeutics for central nervous system (CNS) disorders, including Alzheimer's disease (AD). This has been particularly true in the case of monoclonal antibody (mAbs) therapeutic candidates, due to their large size. To tackle this issue, we developed new nanoformulations, comprising bio-based Triozan polymers along with kinin B1 and B2 receptor (B1R and B2R) peptide agonist analogues, as potent BBB-permeabilizers to enhance brain delivery of a new anti-C1q mAb for AD (ANX005). The prepared B1R/B2R-TRIOZAN™ nanoparticles (NPs) displayed aqueous solubility, B1R/B2R binding capacity and uniform sizes (~130-165 nm). The relative biodistribution profiles of the mAb loaded into these NPs versus the naked mAb were assessed in vivo through two routes of administrations (intravenous (IV), intranasal (IN)) in the Tg-SwDI mouse model of AD. At 24 h post-administration, brain levels of the encapsulated mAb were significantly increased (up to 12-fold (IV) and 5-fold (IN), respectively) compared with free mAb in AD brain affected regions, entorhinal cortex and hippocampus of aged mice. Liver uptakes remained relatively low with similar values for the nanoformulations and free mAb. Our findings demonstrate the potential of B1R/B2R-TRIOZAN™ NPs for the targeted delivery of new CNS drugs, which could maximize their therapeutic effectiveness.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Distribución Tisular , Receptor de Bradiquinina B2/agonistas , Receptor de Bradiquinina B2/metabolismo , Receptor de Bradiquinina B1/agonistas , Receptor de Bradiquinina B1/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad
4.
BMC Biol ; 21(1): 111, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37198654

RESUMEN

BACKGROUND: Mitochondria have a central role in cellular functions, aging, and in certain diseases. They possess their own genome, a vestige of their bacterial ancestor. Over the course of evolution, most of the genes of the ancestor have been lost or transferred to the nucleus. In humans, the mtDNA is a very small circular molecule with a functional repertoire limited to only 37 genes. Its extremely compact nature with genes arranged one after the other and separated by short non-coding regions suggests that there is little room for evolutionary novelties. This is radically different from bacterial genomes, which are also circular but much larger, and in which we can find genes inside other genes. These sequences, different from the reference coding sequences, are called alternatives open reading frames or altORFs, and they are involved in key biological functions. However, whether altORFs exist in mitochondrial protein-coding genes or elsewhere in the human mitogenome has not been fully addressed. RESULTS: We found a downstream alternative ATG initiation codon in the + 3 reading frame of the human mitochondrial nd4 gene. This newly characterized altORF encodes a 99-amino-acid-long polypeptide, MTALTND4, which is conserved in primates. Our custom antibody, but not the pre-immune serum, was able to immunoprecipitate MTALTND4 from HeLa cell lysates, confirming the existence of an endogenous MTALTND4 peptide. The protein is localized in mitochondria and cytoplasm and is also found in the plasma, and it impacts cell and mitochondrial physiology. CONCLUSIONS: Many human mitochondrial translated ORFs might have so far gone unnoticed. By ignoring mtaltORFs, we have underestimated the coding potential of the mitogenome. Alternative mitochondrial peptides such as MTALTND4 may offer a new framework for the investigation of mitochondrial functions and diseases.


Asunto(s)
Genoma Mitocondrial , NADH Deshidrogenasa , Humanos , ADN Mitocondrial/genética , Células HeLa , Mitocondrias/genética , Sistemas de Lectura Abierta , Péptidos , NADH Deshidrogenasa/genética
5.
J Proteome Res ; 22(5): 1492-1500, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961377

RESUMEN

Proteomic diversity in biological samples can be characterized by mass spectrometry (MS)-based proteomics using customized protein databases generated from sets of transcripts previously detected by RNA-seq. This diversity has only been increased by the recent discovery that many translated alternative open reading frames rest unannotated at unsuspected locations of mRNAs and ncRNAs. These novel protein products, termed alternative proteins, have been left out of all previous custom database generation tools. Consequently, genetic variations that impact alternative open reading frames and variant peptides from their translated proteins are not detectable with current computational workflows. To fill this gap, we present OpenCustomDB, a bioinformatics tool that uses sample-specific RNaseq data to identify genomic variants in canonical and alternative open reading frames, allowing for more than one coding region per transcript. In a test reanalysis of a cohort of 16 patients with acute myeloid leukemia, 5666 peptides from alternative proteins were detected, including 201 variant peptides. We also observed that a significant fraction of peptide-spectrum matches previously assigned to peptides from canonical proteins got better scores when reassigned to peptides from alternative proteins. Custom protein libraries that include sample-specific sequence variations of all possible open reading frames are promising contributions to the development of proteomics and precision medicine. The raw and processed proteomics data presented in this study can be found in PRIDE repository with accession number PXD029240.


Asunto(s)
Proteínas , Proteómica , Humanos , Proteómica/métodos , Bases de Datos de Proteínas , Sistemas de Lectura Abierta , Proteínas/genética , Péptidos/genética , Péptidos/análisis
6.
Front Genet ; 14: 1089053, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845399

RESUMEN

Alternative splicing (AS) constitutes a mechanism by which protein-coding genes and long non-coding RNA (lncRNA) genes produce more than a single mature transcript. From plants to humans, AS is a powerful process that increases transcriptome complexity. Importantly, splice variants produced from AS can potentially encode for distinct protein isoforms which can lose or gain specific domains and, hence, differ in their functional properties. Advances in proteomics have shown that the proteome is indeed diverse due to the presence of numerous protein isoforms. For the past decades, with the help of advanced high-throughput technologies, numerous alternatively spliced transcripts have been identified. However, the low detection rate of protein isoforms in proteomic studies raised debatable questions on whether AS contributes to proteomic diversity and on how many AS events are really functional. We propose here to assess and discuss the impact of AS on proteomic complexity in the light of the technological progress, updated genome annotation, and current scientific knowledge.

7.
Cells ; 12(4)2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36831282

RESUMEN

During aging, changes in gene expression are associated with a decline in physical and cognitive abilities. Here, we investigate the connection between changes in mRNA and protein expression in the brain by comparing the transcriptome and proteome of the mouse cortex during aging. Our transcriptomic analysis revealed that aging mainly triggers gene activation in the cortex. We showed that an increase in mRNA expression correlates with protein expression, specifically in the anterior cingulate cortex, where we also observed an increase in cortical thickness during aging. Genes exhibiting an aging-dependent increase of mRNA and protein levels are involved in sensory perception and immune functions. Our proteomic analysis also identified changes in protein abundance in the aging cortex and highlighted a subset of proteins that were differentially enriched but exhibited stable mRNA levels during aging, implying the contribution of aging-related post- transcriptional and post-translational mechanisms. These specific genes were associated with general biological processes such as translation, ribosome assembly and protein degradation, and also important brain functions related to neuroplasticity. By decoupling mRNA and protein expression, we have thus characterized distinct subsets of genes that differentially adjust to cellular aging in the cerebral cortex.


Asunto(s)
Encéfalo , Proteómica , Ratones , Animales , ARN Mensajero/genética , Encéfalo/metabolismo , Envejecimiento/metabolismo , Proteoma/metabolismo
8.
FEBS J ; 290(2): 370-378, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34743413

RESUMEN

How many different proteins can be produced from a single spliced transcript? Genome annotation projects overlook the coding potential of reading frames other than that of the reference open reading frames (refORFs). Recently, alternative open reading frames (altORFs) and their translational products, alternative proteins, have been shown to carry out important functions in various organisms. AltORFs overlapping refORFs or other altORFs in a different reading frame may be involved in one fundamental mechanism so far overlooked. A few years ago, it was proposed that altORFs may act as building blocks for chimeric (mosaic) polypeptides, which are produced via multiple ribosomal frameshifting events from a single mature transcript. We adopt terminology from that earlier discussion and call this mechanism mosaic translation. This way of extracting and combining genetic information may significantly increase proteome diversity. Thus, we hypothesize that this mechanism may have contributed to the flexibility and adaptability of organisms to a variety of environmental conditions. Specialized ribosomes acting as sensors probably played a central role in this process. Importantly, mosaic translation may be the main source of protein diversity in genomes that lack alternative splicing. The idea of mosaic translation is a testable hypothesis, although its direct demonstration is challenging. Should mosaic translation occur, we would currently highly underestimate the complexity of translation mechanisms and thus the proteome.


Asunto(s)
Sistema de Lectura Ribosómico , Proteoma , Sistema de Lectura Ribosómico/genética , Secuencia de Bases , Proteoma/metabolismo , Péptidos/genética , Péptidos/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas/genética
9.
Front Cell Neurosci ; 16: 1019680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467612

RESUMEN

Translation involves the biosynthesis of a protein sequence following the decoding of the genetic information embedded in a messenger RNA (mRNA). Typically, the eukaryotic mRNA was considered to be inherently monocistronic, but this paradigm is not in agreement with the translational landscape of cells, tissues, and organs. Recent ribosome sequencing (Ribo-seq) and proteomics studies show that, in addition to currently annotated reference proteins (RefProt), other proteins termed alternative proteins (AltProts), and microproteins are encoded in regions of mRNAs thought to be untranslated or in transcripts annotated as non-coding. This experimental evidence expands the repertoire of functional proteins within a cell and potentially provides important information on biological processes. This review explores the hitherto overlooked alternative proteome in neurobiology and considers the role of AltProts in pathological and healthy neuromolecular processes.

10.
Artículo en Inglés | MEDLINE | ID: mdl-36183975

RESUMEN

Recent proteogenomic approaches have led to the discovery that regions of the transcriptome previously annotated as non-coding regions [i.e., untranslated regions (UTRs), open reading frames overlapping annotated coding sequences in a different reading frame, and non-coding RNAs] frequently encode proteins, termed alternative proteins (altProts). This suggests that previously identified protein-protein interaction (PPI) networks are partially incomplete because altProts are not present in conventional protein databases. Here, we used the proteogenomic resource OpenProt and a combined spectrum- and peptide-centric analysis for the re-analysis of a high-throughput human network proteomics dataset thereby revealing the presence of 261 altProts in the network. We found 19 genes encoding both an annotated (reference) and an alternative protein interacting with each other. Of the 117 altProts encoded by pseudogenes, 38 are direct interactors of reference proteins encoded by their respective parental gene. Finally, we experimentally validate several interactions involving altProts. These data improve the blueprints of the human PPI network and suggest functional roles for hundreds of altProts.

11.
Cell Biosci ; 12(1): 130, 2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-35965322

RESUMEN

BACKGROUND: Recent technological advances have revealed thousands of functional open reading frames (ORF) that have eluded reference genome annotations. These overlooked ORFs are found throughout the genome, in any reading frame of transcripts, mature or non-coding, and can overlap annotated ORFs in a different reading frame. The exploration of these novel ORFs in genomic datasets and of their role in genetic traits is hindered by a lack of software. RESULTS: Here, we present OpenVar, a genomic variant annotator that mends that gap and fosters meaningful discoveries. To illustrate the potential of OpenVar, we analysed all variants within SynMicDB, a database of cancer-associated synonymous mutations. By including non-canonical ORFs in the analysis, OpenVar yields a 33.6-fold, 13.8-fold and 8.3-fold increase in high impact variants over Annovar, SnpEff and VEP respectively. We highlighted an overlapping non-canonical ORF in the HEY2 gene where variants significantly clustered. CONCLUSIONS: OpenVar integrates non-canonical ORFs in the analysis of genomic variants, unveiling new research avenues to better understand the genotype-phenotype relationships.

13.
Front Physiol ; 12: 624097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643068

RESUMEN

Physiological and biochemical networks are highly complex, involving thousands of nodes as well as a hierarchical structure. True network structure is also rarely known. This presents major challenges for applying classical network theory to these networks. However, complex systems generally share the property of having a diffuse or distributed signal. Accordingly, we should predict that system state can be robustly estimated with sparse sampling, and with limited knowledge of true network structure. In this review, we summarize recent findings from several methodologies to estimate system state via a limited sample of biomarkers, notably Mahalanobis distance, principal components analysis, and cluster analysis. While statistically simple, these methods allow novel characterizations of system state when applied judiciously. Broadly, system state can often be estimated even from random samples of biomarkers. Furthermore, appropriate methods can detect emergent underlying physiological structure from this sparse data. We propose that approaches such as these are a powerful tool to understand physiology, and could lead to a new understanding and mapping of the functional implications of biological variation.

14.
J Biol Chem ; 296: 100329, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33497625

RESUMEN

Recent functional and proteomic studies in eukaryotes (www.openprot.org) predict the translation of alternative open reading frames (AltORFs) in mature G-protein-coupled receptor (GPCR) mRNAs, including that of bradykinin B2 receptor (B2R). Our main objective was to determine the implication of a newly discovered AltORF resulting protein, termed AltB2R, in the known signaling properties of B2R using complementary methodological approaches. When ectopically expressed in HeLa cells, AltB2R presented predominant punctate cytoplasmic/perinuclear distribution and apparent cointeraction with B2R at plasma and endosomal/vesicular membranes. The presence of AltB2R increases intracellular [Ca2+] and ERK1/2-MAPK activation (via phosphorylation) following B2R stimulation. Moreover, HEK293A cells expressing mutant B2R lacking concomitant expression of AltB2R displayed significantly decreased maximal responses in agonist-stimulated Gαq-Gαi2/3-protein coupling, IP3 generation, and ERK1/2-MAPK activation as compared with wild-type controls. Conversely, there was no difference in cell-surface density as well as ligand-binding properties of B2R and in efficiencies of cognate agonists at promoting B2R internalization and ß-arrestin 2 recruitment. Importantly, both AltB2R and B2R proteins were overexpressed in prostate and breast cancers, compared with their normal counterparts suggesting new associative roles of AltB2R in these diseases. Our study shows that BDKRB2 is a dual-coding gene and identifies AltB2R as a novel positive modulator of some B2R signaling pathways. More broadly, it also supports a new, unexpected alternative proteome for GPCRs, which opens new frontiers in fields of GPCR biology, diseases, and drug discovery.


Asunto(s)
Empalme Alternativo/genética , Bradiquinina/genética , Isoformas de Proteínas/genética , Receptor de Bradiquinina B2/genética , Bradiquinina/metabolismo , Endocitosis/genética , Endosomas/genética , Células HEK293 , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas/genética , Sistemas de Lectura Abierta/genética , Proteómica , Transducción de Señal/genética
15.
Nucleic Acids Res ; 49(D1): D380-D388, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33179748

RESUMEN

OpenProt (www.openprot.org) is the first proteogenomic resource supporting a polycistronic annotation model for eukaryotic genomes. It provides a deeper annotation of open reading frames (ORFs) while mining experimental data for supporting evidence using cutting-edge algorithms. This update presents the major improvements since the initial release of OpenProt. All species support recent NCBI RefSeq and Ensembl annotations, with changes in annotations being reported in OpenProt. Using the 131 ribosome profiling datasets re-analysed by OpenProt to date, non-AUG initiation starts are reported alongside a confidence score of the initiating codon. From the 177 mass spectrometry datasets re-analysed by OpenProt to date, the unicity of the detected peptides is controlled at each implementation. Furthermore, to guide the users, detectability statistics and protein relationships (isoforms) are now reported for each protein. Finally, to foster access to deeper ORF annotation independently of one's bioinformatics skills or computational resources, OpenProt now offers a data analysis platform. Users can submit their dataset for analysis and receive the results from the analysis by OpenProt. All data on OpenProt are freely available and downloadable for each species, the release-based format ensuring a continuous access to the data. Thus, OpenProt enables a more comprehensive annotation of eukaryotic genomes and fosters functional proteomic discoveries.


Asunto(s)
Bases de Datos de Proteínas , Eucariontes/genética , Genoma , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Espectrometría de Masas , Isoformas de Proteínas/genética , Proteogenómica , Ribosomas/metabolismo , Interfaz Usuario-Computador
16.
EMBO Rep ; 22(1): e50640, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33226175

RESUMEN

Novel functional coding sequences (altORFs) are camouflaged within annotated ones (CDS) in a different reading frame. We show here that an altORF is nested in the FUS CDS, encoding a conserved 170 amino acid protein, altFUS. AltFUS is endogenously expressed in human tissues, notably in the motor cortex and motor neurons. Over-expression of wild-type FUS and/or amyotrophic lateral sclerosis-linked FUS mutants is known to trigger toxic mechanisms in different models. These include inhibition of autophagy, loss of mitochondrial potential and accumulation of cytoplasmic aggregates. We find that altFUS, not FUS, is responsible for the inhibition of autophagy, and pivotal in mitochondrial potential loss and accumulation of cytoplasmic aggregates. Suppression of altFUS expression in a Drosophila model of FUS-related toxicity protects against neurodegeneration. Some mutations found in ALS patients are overlooked because of their synonymous effect on the FUS protein. Yet, we show they exert a deleterious effect causing missense mutations in the overlapping altFUS protein. These findings demonstrate that FUS is a bicistronic gene and suggests that both proteins, FUS and altFUS, cooperate in toxic mechanisms.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína FUS de Unión a ARN , Esclerosis Amiotrófica Lateral/genética , Animales , Drosophila/genética , Humanos , Neuronas Motoras , Mutación , Proteína FUS de Unión a ARN/genética
17.
Curr Protoc Bioinformatics ; 71(1): e103, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32780568

RESUMEN

Ten of thousands of open reading frames (ORFs) are hidden within genomes. These alternative ORFs, or small ORFs, have eluded annotations because they are either small or within unsuspected locations. They are found in untranslated regions or overlap a known coding sequence in messenger RNA and anywhere in a "non-coding" RNA. Serendipitous discoveries have highlighted these ORFs' importance in biological functions and pathways. With their discovery came the need for deeper ORF annotation and large-scale mining of public repositories to gather supporting experimental evidence. OpenProt, accessible at https://openprot.org/, is the first proteogenomic resource enforcing a polycistronic model of annotation across an exhaustive transcriptome for 10 species. Moreover, OpenProt reports experimental evidence cumulated across a re-analysis of 114 mass spectrometry and 87 ribosome profiling datasets. The multi-omics OpenProt resource also includes the identification of predicted functional domains and evaluation of conservation for all predicted ORFs. The OpenProt web server provides two query interfaces and one genome browser. The query interfaces allow for exploration of the coding potential of genes or transcripts of interest as well as custom downloads of all information contained in OpenProt. © 2020 The Authors. Basic Protocol 1: Using the Search interface Basic Protocol 2: Using the Downloads interface.


Asunto(s)
Biología Computacional , Sistemas de Lectura Abierta , Proteómica/métodos , Navegador Web , Animales , Humanos , Anotación de Secuencia Molecular , Proteoma/genética , Ribosomas/genética , Interfaz Usuario-Computador
18.
Exp Cell Res ; 393(1): 112057, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32387289

RESUMEN

The discovery of functional yet non-annotated open reading frames (ORFs) throughout the genome of several species presents an unprecedented challenge in current genome annotation. These novel ORFs are shorter than annotated ones and many can be found on the same RNA, in opposition to current assumptions in annotation methodologies. Whilst the literature lacks consensus, these novel ORFs are commonly referred to as small ORFs (sORFs) or alternative ORFs (alt-ORFs). Unannotated ORFs represent an overlooked layer of complexity in the coding potential of genomes and are transforming our current vision of the nature of coding genes. In this review, we outline what constitutes a sORF or an alt-ORF and emphasize differences between both nomenclatures. We then describe complementary large-scale methods to accurately discover novel ORFs as well as yield functional insights on the novel proteins they encode. While serendipitous discoveries highlighted the functional importance of some novel ORFs, omics methods facilitate and improve their characterization to better understand physiological and pathological pathways. Functional annotation of sORFs, alt-ORFs and their corresponding microproteins will likely help fundamental and clinical research.


Asunto(s)
Biología Computacional , Genoma/genética , Sistemas de Lectura Abierta/genética , Proteínas/genética , Animales , Biología Computacional/métodos , Genómica , Humanos , Anotación de Secuencia Molecular/métodos
19.
Nat Commun ; 11(1): 1306, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161257

RESUMEN

Pseudogenes are mutated copies of protein-coding genes that cannot be translated into proteins, but a small subset of pseudogenes has been detected at the protein level. Although ubiquitin pseudogenes represent one of the most abundant pseudogene families in many organisms, little is known about their expression and signaling potential. By re-analyzing public RNA-sequencing and proteomics datasets, we here provide evidence for the expression of several ubiquitin pseudogenes including UBB pseudogene 4 (UBBP4), which encodes UbKEKS (Q2K, K33E, Q49K, N60S). The functional consequences of UbKEKS conjugation appear to differ from canonical ubiquitylation. Quantitative proteomics shows that UbKEKS modifies specific proteins including lamins. Knockout of UBBP4 results in slower cell division, and accumulation of lamin A within the nucleolus. Our work suggests that a subset of proteins reported as ubiquitin targets may instead be modified by ubiquitin variants that are the products of wrongly annotated pseudogenes and induce different functional effects.


Asunto(s)
Lamina Tipo A/metabolismo , Seudogenes/genética , Ubiquitina/genética , Sistemas CRISPR-Cas/genética , División Celular , Núcleo Celular/metabolismo , Clonación Molecular , Conjuntos de Datos como Asunto , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Proteómica , RNA-Seq , Ubiquitina/metabolismo , Ubiquitinación
20.
Anal Chem ; 92(1): 1122-1129, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31829555

RESUMEN

Large scale proteomic strategies rely on database interrogation. Thus, only referenced proteins can be identified. Recently, Alternative Proteins (AltProts) translated from nonannotated Alternative Open reading frame (AltORFs) were discovered using customized databases. Because of their small size which confers them peptide-like physicochemical properties, they are more difficult to detect using standard proteomics strategies. In this study, we tested different preparation workflows for improving the identification of AltProts in NCH82 human glioma cell line. The highest number of identified AltProts was achieved with RIPA buffer or boiling water extraction followed by acetic acid precipitation.


Asunto(s)
Proteoma/análisis , Extracción en Fase Sólida/métodos , Flujo de Trabajo , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/química , Biomarcadores de Tumor/aislamiento & purificación , Línea Celular Tumoral , Cromatografía Liquida , Humanos , Peso Molecular , Proteoma/química , Proteoma/aislamiento & purificación , Proteómica/métodos , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...